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I Scheduling on HPC Systems

€2 = Today, High-Performance Computing (HPC)

I systems are the key factor to many scientific
= discoveries.
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Scheduling on HPC Systems

= Job Schedulers help ensure fair access to

computing resources while maintaining optimal
system utilization.

= HPC systems often use multi-level FCFS queues
with Backfilling.
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DRL Schedulers

Deep Reinforcement Learning (DRL) is a type of

machine learning where an agent learns to make
decisions by interacting with an environment and
improves by receiving rewards.
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I DRL Schedulers

g
€3 Many DRL Schedulers were introduced to deal
with the complexity of HPC software,
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Management with Deep Reinforcement Learning. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks (HotNets '16). Association for Computing Machinery, New York,
NY, USA, 50-56. https://doi.org/10.1145/3005745.3005750

and multidisciplinary research.
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I DRL Schedulers

‘BKJ = DRAS (Deep Reinforcement Agent for Scheduling) is the latest HPC scheduling
model based on DRL and a hierarchical neural network.

) l\ = DRAS performs resource reservation and backfilling and efficiently learns and adapts
AN its policy in response to workload changes.
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I DRL Schedulers

g
€2 However, the HPC state representation of DRAS is
% simple and does not reflect the behavior in real HPC
N

systems.

Two few attributes
for a “real” batch job

\
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I  Research Goals

€3 = Improve the HPC state representation of the
I DRL model with applicable attributes.

= Assist the Scheduling Agent with more accurate
information from the production environment.

= Prove the possibility of the prosed solution with
date from our SuperNode-XP HPC System in
: HCMUT, VNU-HCMC.
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IRLS Environment Representation

Based on DRAS, we improve the state by adding two
important factors: user ID and application ID, to
help the agent learn from similar submitted jobs.

State representation

Paig node . e . node
req_proc | wait_time availability user id req_proc | wait_time | userid availability
+ =
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I IRLS Environment Representation

€2 = We also “calibrate” the user-provided req_time
S value based on their estimation history
N

State representation

req_proc | wait_time | userid fleiis req_proc | wait_time | userid Hets
- - availability - - availability
number | time to number | time to
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where ratio_error = Z -
runtime
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I Agent Scheduling Reward

BK : "
€3 = Thereward function to be maximized:
L = Avoid the problem of job starvation

AN o Focus on large-scale jobs

= Using as many nodes of the system as possible to improve utilization.

Average wait time of Average number of Number of
finished jobs requested nodes allocated nodes
n weights based on ) t ) n ) N used
1 system policy W17 * + + Wy * N + W3 * N
max
Max recorded wait time of Total number of nodes in the system

finished jobs
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Evaluation

= Experiments uses CQSim* on Google Colab

= Use two datasets:.

Name SDSC-SP2-1998 | HCMUT-SuperNodeXP
P (proc) 128 288

N (job) 59715 15886

1 (sec) 1055 6976

7 (sec) 17394 139933508
p (proc) 14 48

[1] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and M. Papka, "Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems", Proc.

of SC'13, 2013.
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I  Evaluation

g
€2 = IRLS has better scheduling performance

SDSC-SP2-1998
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I  Evaluation

€ = |RLS still maintains an acceptable inference time

P e

2

Model
FCFS | A2C | IRLS-0 | IRLS
AVG training time (s) 0 278 364 370
i AVG inference time (s) 0 137 140 140
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I  Conclusion and future work

€9 = The proposed improvement effectively increases
I the model's performance without affecting the
training and inference time, especially on our
collected SuperNode-XP dataset.

= This is only the very, very first step:

= Investigate the state representation for each
particular HPC system with more constraints.

= Extend experiments with more latest datasets
from other HPC systems.
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