

Potential of Applying kNN with Soft Walltime to Improve Scheduling Performance

<u>Thanh Hoang Le Hai</u>, Loc La Hoang, Nam Thoai

thanhhoang@hcmut.edu.vn High Performance Computing Laboratory Advanced Institute of Interdisciplinary Science and Technology Ho Chi Minh City University of Technology (HCMUT) VNU Ho Chi Minh City

Outline

Introduction

- Scheduling on HPC systems
- User Walltime Prediction
- Walltime correction using kNN
- Soft Walltime Scheme
- Evaluation
- Conclusion and Future work

 Today, <u>High-Performance Computing</u> (HPC) is a key factor that leads to a significant number of scientific discoveries.

Photo: RIKEN

 <u>Resource and Job Management System</u> (RJMS) helps ensure fair access to computing resources while maintaining the optimal system utilization

Job schedulers usually use a primary FCFS queue with **Backfilling**

Source: Ahuva Mu'alem Dror G. Feitelson, "Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling", July 2001, IEEE Transactions on Parallel and Distributed Systems 12(6):529 - 543

- Users may (or have to) provide their walltime estimates before submitting their workloads
- However, user predictions are usually poor

User Walltime Prediction

 Workload logs are collected from the <u>Parallel</u> <u>Workload Archive</u> (PWA)

STATISTICS OF FOUR WORKLOADS

Workload Trace	From	Duration	#Jobs	#Nodes
HPC2N-2002	Jul 2002	42 months	202,871	240
SDSC-DS-2004	Mar 2004	13 months	96,069	171
ANL-Intrepid-2009	Sep 2009	8 months	68,936	640
UniLu-Gaia-2014	May 2014	3 months	51,987	2,004

User Walltime Prediction

 User estimations are inaccurate although they already had some experience already

Solution: *k***NN method!**

The inaccurate user estimate of a job is **refined** using the **historic data** about its most similar jobs

BK

Similarity = Distance between points

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

 $\begin{aligned} \textbf{Label} &= \text{Major voting} \\ q^c &= \operatorname*{arg\,max}_{c \in C} \sum_{i=1}^k w_i \delta\left(c = \overline{T}_i^c\right) \end{aligned}$

However, some special attributes such as **uid** does not make sense in term of similarity! *p*: finished job $A = (j^r, j^u, j^w, j^w)$ q: new job predicted requested actual uid walltime walltime resources $d\left(p,q\right) = \sqrt{\sum_{i \in A'} \left(q^{i} - p^{i}\right)^{2} + d_{pq}^{u}}$ $d_{pq}^{u} = \begin{cases} \epsilon & p^{u} \neq q^{u}, \\ 0 & p^{u} = q^{u}. \end{cases}$ information of the current user

After finding most similar items calculate the **walltime correction factor** Δ_q

$$\mathbf{w}_i = e^{-\alpha d_i^\beta}$$

Exponential weight

$$\Delta_p = \frac{\widetilde{p^w}}{p^w}$$

Deviation ratio

$$\Delta_q = \begin{cases} \frac{\sum\limits_{i=1}^{k} \mathbf{w}_i \Delta_i}{\frac{\sum\limits_{i=1}^{k} \mathbf{w}_i}{\sum\limits_{i=1}^{k} \mathbf{w}_i}} & |\overline{T}| > 0, \\ \frac{\sum\limits_{i=1}^{k} \mathbf{w}_i}{1} & |\overline{T}| = 0. \end{cases}$$

T: Set of *k* nearest neighbors **above the threshold O** from *N* latest finished jobs

Finally, calculate the **refined** walltime

Soft Walltime Scheme

- Underestimated walltime might terminate uncompleted tasks and make HPC systems unreliable.
- Soft Walltime scheme from OpenPBS use predicted values only for making reservation decisions
- The original hard walltime from users is still treated as the upper bound of execution time.

Safe and Clear to users!

- Use <u>Batsim</u> with four selected workload
- Compare the predicted walltime with:
 - Perfect estimates
 - No correction
 - The per-user basis method *min.diff* (min diff of last 5 same user submissions)

- kNN <u>intuitive</u> configuration:
 - k = 5 most similar jobs
 - N = 1000 latest finished job
 - $\Theta = 0.001$ (neighbor threshold)
 - **ε** = Θ/4
 - All attributes of the set A' are normalized to the range [0,1].
- Conservative Backfilling

Prediction Accuracy

Average prediction deviation ratio between estimated and actual walltime:

kNN has best accuracy

H

Accuracy Improvement Heatmap

Prediction performance heatmap of *k*NN over original user estimates **Red**: Improvement, **Blue**: Deterioration

Average Waiting Time

Reflects the advantage of walltime improvement on each traces

Figure 6. Comparision of average wait time

Waiting time Improvement Heatmap

Wait time improvement or deterioration usingkNN on four workloads, comparing to user estimate **Red**: Improvement, **Blue**: Deterioration

Conclusion and future work

- Soft walltime feature on OpenPBS has introduced an efficient and safe way to apply any advanced correction solutions such as kNN.
- The use of similar jobs to predict job walltime is good enough to deal with the complexity of workload and the uncertainty of user estimates.
- Even an intuitive setup can reduce the prediction deviation and thus improve system performance in some workloads

Conclusion and future work

- There is still a challenge of picking better parameters for more reliable neighbors, especially in the case of large jobs
- The use of refined walltime must be taken carefully due to the gained benefits may not be as worth as expected

Conclusion and future work

ERK
Н

- Future work:
 - Deploy our kNN method on an HPC system running OpenPBS to fully examine the soft walltime in practice
 - Analyze other machine learning techniques with Soft Walltime to find a better approach for improving backfilling performance

Thank you!

Thanh Hoang Le Hai

thanhhoang@hcmut.edu.vn High Performance Computing Laboratory HCMUT – VNU HCM