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1. Introduction
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What is High Performance Computing?

HPC – High Performance Computing: Ability to process data and perform 
complex calculations at high speeds
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What is High Performance Computing?

Are you using HPC systems?
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Why Job Runtime Prediction Matters in HPC?

A general workflow on HPC systems
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Why Job Runtime Prediction Matters in HPC?

Common scheduling policies such as EASY Backfilling need runtime 
estimates to perform “backfilling” queued jobs 
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backfill

FCFS Queue



Challenges in Job Runtime Prediction

Is Job Runtime Prediction similar to other common ML problems?
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Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

§ Dynamic and Heterogeneous Workloads: 
• HPC jobs span a wide range of applications:

• Scientific simulations (e.g., weather forecasting, genomics).
• AI/ML training workloads.
• Emerging quantum computing tasks.

• Workloads vary in computational intensity, memory usage, and I/O 
demands.
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Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

§ Evolving Hardware Ecosystem:
• The transition from CPU-based to GPU-dominated systems.
• Increasing adoption of heterogeneous architectures (CPU-GPU-

QPU hybrids).
• Hardware upgrades and configurations introduce unpredictability.

§ User-Provided Estimates are Often Inaccurate:
• Users tend to overestimate runtimes to avoid premature 

termination.
• Underestimations lead to job failures and resubmissions.
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Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

§ Complex Interdependencies:
• Job runtimes depend on multiple factors:

• System state at submission.
• Queueing delays.

§ Need for Real-Time Adaptation:
• Runtime predictions must adapt to:

• Changes in system workload patterns.
• Shifts in user behavior.
• Variations in job parameters.
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Why Single Models Are Not Enough?

Using a single ML model is a straightforward implementation, but:
§ A single model must expand and adapt to capture diverse job 

characteristics, making it increasingly complex and large.

§ Large models require significant computational resources for training 
and runtime predictions.

§ A single model tuned for specific workloads may struggle with unseen 
patterns or outliers.
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Why don’t we combine smaller ML models?



Ensemble Learning

The idea behind ensemble learning is that by combining the strengths of 
several models, the ensemble can potentially produce better results than 
any single model.
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Ismail, S., El Mrabet, Z., & Reza, H. (2023). An Ensemble-Based Machine Learning Approach for Cyber-Attacks Detection in Wireless Sensor Networks. Applied 
Sciences, 13(1), 30. https://doi.org/10.3390/app13010030



Research Goals and Objectives

Goal: A robust job runtime prediction model to optimize the resource allocation 
process in dynamic HPC environments

Objectives:
§ Develop an ensemble model that combines multiple predictors to estimate 

job runtimes accurately.
§ Utilize precise runtime predictions to optimize job scheduling.
§ Design the predictor to handle a variety of job types and system 

configurations.
§ Allow the model to adapt to changing workload patterns over time.
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2. Related Works
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History of Job Runtime Prediction in HPC Systems
• 1990s–2000s: Early Methods with Heuristics and User Estimates. 

• Mu’alem and Feitelson (2001) explored the utilization of user runtime estimates in backfilling, 
showing that their inaccuracies significantly affected scheduling efficiency.

• 2000s–2010s: Shifted to data-driven methods like regression models for predicting 
runtime.
• Tsafrir et al. (2007) introduced system-generated runtime predictions, replacing user estimates to 

improve backfilling performance
• 2010s–Present: Adopting ML techniques for capturing complex patterns.

• Gaussier et al. (2015) proposed using machine learning for runtime predictions to improve 
backfilling efficiency, demonstrating significant improvements in scheduling performance.

• Fengxian Chen (2023) demonstrated the ability of Transformer Networks to improve the 
prediction performance and quality of job scheduling in HPC clusters.
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Ensemble Learning for Job Runtime Prediction
Many works have utilized ensemble learning for job runtime prediction:
• Tanash et al. (2021) combined multiple ML models to predict resource demands in SLURM-based 

HPC systems.
• Bai et al. (2022) proposed a Multivariate Resource Demand Prediction (MRDP) model using 

ensemble learning with a random forest meta-learner.
• Ramachandran et al. (2024) integrated ML models and genetic algorithms for runtime prediction.

However: 
§ Existing ensemble models lack real-time feedback mechanisms to adapt to workload changes and 

system upgrades.
§ Limited studies evaluate the direct impact of runtime prediction accuracy on scheduling efficiency.
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• Tanash, M., Yang, H., Andresen, D., Hsu, W. (2021): Ensemble prediction of job resources to improve system performance for SLURM-based HPC systems. In PEARC ’21. 
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• Ramachandran, S., Jayalal, M., Vasudevan, M., Das, S., Jehadeesan, R. (2024): Combining machine learning techniques and genetic algorithms for predicting runtimes of HPC jobs. 

Applied Soft Computing, 165, 112053.



3. Proposed Method
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JREP Overview
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Job Runtime Ensemble Predictor

Base models: kNN, RF, SVM, DNN – each 
captures different data dimensions.

Meta-learner: Combines base predictions for 
final output.

Feedback loop: Continuous learning ensures 
adaptability to dynamic workloads.

Job Info:
- Requested Resources

- Execution IU

- User ID 

- Group ID

- Queue



4. Experimental Results
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Evaluating JREP with Deviation Backfilling
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Deviation Backfilling extends traditional 
backfilling by accounting for runtime 
prediction deviations to improve 
scheduling decisions.

Better Prediction = More Space to Backfill Queued Jobs

Le Hai, T.H., Duy, K.N., Manh, T.N., Hoang, D.M., Thoai, N.: Deviation backfilling: a robust backfilling scheme for improving the efficiency of 
job scheduling on high performance computing systems. In: 2023 International Conference on Advanced Computing and Analytics 
(ACOMPA), pp. 32–37 (2023)



Real Workload Datasets
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Scheduling Datasets: Parallel Workload Archive (PWA) + SuperNode-XP

Dror G. Feitelson, Dan Tsafrir, David Krakov, 
Experience with using the Parallel Workloads 
Archive, Journal of Parallel and Distributed 
Computing, Volume 74, Issue 10, 2014

https://www.cs.huji.ac.il/labs/parallel/workload



Scheduling Simulation
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Simulation tool: Batsim with PyBatsim

https://batsim.readthedocs.io/en/latest/



Base Predictors Setup
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Implemented by scikit-learn in Python

https://batsim.readthedocs.io/en/latest/



Scheduling Performance Result
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Average Job Wait Time (Lower is better)

Average Job Slowdown (Lower is better)



Ensemble Prediction Performance 
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R2 Comparison Across Datasets (Higher is better)

RSME Comparison Across Datasets (Lower is better)



Ensemble Prediction Performance 
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RMSE for Every finished 1000 Jobs for Each Predictor (SDSC-DS-2004) 



5. Conclusions
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Remarks
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§ Accurate runtime prediction is essential for optimizing resource allocation 
and scheduling in HPC systems.

§ We introduced a novel approach called JREP to provide a scalable, 
adaptable, and accurate prediction framework that can be directly integrated 
into scheduling mechanisms.

§ We hope that our contribution can be a foundation for further exploration of 
ensemble learning in dynamic, heterogeneous HPC environments.



What’s next
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https://quantum.hpcc.vn



Thank you
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