The 11th International Conference on Future Data and Security Engineering

FDSE 2024

VIETNAMESE-GERMAN UNIVERSITY, BEN CAT, BINH DUONG, VIETNAM
November 27-29, 2024

@Springer m kv)ELGl - I}: B; J !Ldjc FAW SPRINGERNATURE SN
FDSE Paper #22

JREP - A Job Runtime Ensemble Predictor
for Improving Scheduling Performance

on High Performance Computing Systems
Thanh Hoang Le Hai, Thin Nguyen Manh, Hung Nguyen Quang, and Nam Thoai

thanhhoang@hcmut.edu.vn

High Performance Computing Lab
Faculty of Computer Science & Engineering, HCMUT, VNU-HCM

VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY

g g
@] HO CHIMINH CITY UNIVERSITY OF TECHNOLOGY )y CSE }j& 'Z'PCC} www.hpee.vn hpcc@hemut.edu.vn


mailto:thanhhoang@hcmut.edu.vn

I Today’s Contents

Introduction

Related Works
Proposed Method
Experimental Results
Conclusions

o K~ b=

ﬂ VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY a
‘BK) HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY BQ CS E },& IZIPCC FDSE 2024



1. Introduction
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L What is High Performance Computing?

HPC — High Performance Computing: Ability to process data and perform
complex calculations at high speeds
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L What is High Performance Computing?

Are you using HPC systems?
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' Why Job Runtime Prediction Matters in HPC?

A general workflow on HPC systems
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' Why Job Runtime Prediction Matters in HPC?

Common scheduling policies such as EASY Backfilling need runtime
estimates to perform “backfilling” queued jobs
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I Challenges in Job Runtime Prediction

Is Job Runtime Prediction similar to other common ML problems?
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Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

= Dynamic and Heterogeneous Workloads:
- HPC jobs span a wide range of applications:

 Scientific simulations (e.g., weather forecasting, genomics).
 Al/ML training workloads.

- Emerging quantum computing tasks.

- Workloads vary in computational intensity, memory usage, and 1/O
demands.
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I Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

= Evolving Hardware Ecosystem:
- The transition from CPU-based to GPU-dominated systems.

- Increasing adoption of heterogeneous architectures (CPU-GPU-
QPU hybrids).

- Hardware upgrades and configurations introduce unpredictability.
= User-Provided Estimates are Often Inaccurate:

- Users tend to overestimate runtimes to avoid premature
termination.

- Underestimations lead to job failures and resubmissions.
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Challenges in Job Runtime Prediction

Runtime Prediction is not like other common ML problems

= Complex Interdependencies:
- Job runtimes depend on multiple factors:
« System state at submission.
* Queueing delays.
= Need for Real-Time Adaptation:
- Runtime predictions must adapt to:
« Changes in system workload patterns.
 Shifts in user behavior.
 Variations in job parameters.
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L Why Single Models Are Not Enough?

Using a single ML model is a straightforward implementation, but:

= A single model must expand and adapt to capture diverse job
characteristics, making it increasingly complex and large.

= Large models require significant computational resources for training
and runtime predictions.

= A single model tuned for specific workloads may struggle with unseen
patterns or outliers.

Why don’t we combine smaller ML models?
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Ensemble Learning

The idea behind ensemble learning is that by combining the strengths of
several models, the ensemble can potentially produce better results than

any single model.
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Ismail, S., El Mrabet, Z., & Reza, H. (2023). An Ensemble-Based Machine Learning Approach for Cyber-Attacks Detection in Wireless Sensor Networks. Applied
Sciences, 13(1), 30. https://doi.org/10.3390/app 13010030
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I Research Goals and Objectives

Goal: A robust job runtime prediction model to optimize the resource allocation
process in dynamic HPC environments

Objectives:

= Develop an ensemble model that combines multiple predictors to estimate
job runtimes accurately.

= Utilize precise runtime predictions to optimize job scheduling.

_ = Design the predictor to handle a variety of job types and system
| configurations.

= Allow the model to adapt to changing workload patterns over time.
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2. Related Works
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I History of Job Runtime Prediction in HPC Systems

« 1990s-2000s: Early Methods with Heuristics and User Estimates.

- Mu’alem and Feitelson (2001) explored the utilization of user runtime estimates in backfilling,
showing that their inaccuracies significantly affected scheduling efficiency.

- 2000s-2010s: Shifted to data-driven methods like regression models for predicting
runtime.
- Tsafrir et al. (2007) introduced system-generated runtime predictions, replacing user estimates to
improve backfilling performance
- 2010s—Present: Adopting ML techniques for capturing complex patterns.

- Gaussier et al. (2015) proposed using machine learning for runtime predictions to improve
backfilling efficiency, demonstrating significant improvements in scheduling performance.

- Fengxian Chen (2023) demonstrated the ability of Transformer Networks to improve the
prediction performance and quality of job scheduling in HPC clusters.

*  Mu’alem, A.\W., Feitelson, D.G. (2001): Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems, 12(6), 529-543.

» Tsafrir, D., Etsion, Y., Feitelson, D.G. (2007): Backfilling using system-generated predictions rather than user runtime estimates. IEEE Transactions on Parallel and
Distributed Systems, 18(6), 789-803.

» QGaussier, E., Glesser, D., Reis, V., Trystram, D. (2015): Improving backfilling by using machine learning to predict running times. In SC '15: International Conference for
High-Performance Computing, Networking, Storage and Analysis (pp. 1-10).

* Chen, F. Job runtime prediction of HPC cluster based on PC-Transformer. J Supercomput 79, 20208-20234 (2023). https://doi.org/10.1007/s11227-023-05470-2
VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY

g g
€D HO CHIMINH CITY UNIVERSITY OF TECHNOLOGY {4}y CSE },& IZIPC? FDSE 2024 17



Ensemble Learning for Job Runtime Prediction
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Many works have utilized ensemble learning for job runtime prediction:

Tanash et al. (2021) combined multiple ML models to predict resource demands in SLURM-based
HPC systems.

Bai et al. (2022) proposed a Multivariate Resource Demand Prediction (MRDP) model using
ensemble learning with a random forest meta-learner.

Ramachandran et al. (2024) integrated ML models and genetic algorithms for runtime prediction.

However:

Existing ensemble models lack real-time feedback mechanisms to adapt to workload changes and
system upgrades.

Limited studies evaluate the direct impact of runtime prediction accuracy on scheduling efficiency.

* Tanash, M., Yang, H., Andresen, D., Hsu, W. (2021): Ensemble prediction of job resources to improve system performance for SLURM-based HPC systems. In PEARC "21.
* Bai, Y., Guo, Y., Zhang, H., Wang, J., Chen, J. (2022): An ensemble learning-based HPC multi-resource demand prediction model for hybrid clusters. In ICCSMT 2022.
* Ramachandran, S., Jayalal, M., Vasudevan, M., Das, S., Jehadeesan, R. (2024): Combining machine learning techniques and genetic algorithms for predicting runtimes of HPC jobs.

Applied Soft Computing, 165, 112053.

VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY

g
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY E‘HQ CS E },&A MRES FDSE 2024

18



&
¢

3. Proposed Method
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4. Experimental Results
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I Evaluating JREP with Deviation Backfilling

Max Procs |

Deviation Backfilling extends traditional
backfilling by accounting for runtime
prediction deviations to improve

scheduling decisions.
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Real Workload Datasets

Scheduling Datasets: Parallel Workload Archive (PWA) + SuperNode-XP
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Dror G. Feitelson, Dan Tsafrir, David Krakov,
Experience with using the Parallel Workloads
Archive, Journal of Parallel and Distributed
Computing, Volume 74, Issue 10, 2014

https://www.cs.huji.ac.il/labs/parallel/workload
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I Scheduling Simulation

Simulation tool: Batsim with PyBatsim

Real Batsim simulation
RJMS decision maker (RJMS + adaptor)
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I Base Predictors Setup

Implemented by scikit-learn in Python

solver = ’adam’, max_iter = 1000, learning rate_init = 0.001 Base Predictors

Method Parameters i : :
RF n_estimators = 500, max_depth = None, min_samples_split = 2, ! : TR e E
max_features = ’auto’, bootstrap = True : : e :
. _ . _ . . _ : : : Meta
KNN n_nelgl.lbors = b, weights = ’distance’, algorithm = ’auto’, : | RIS : e
leaf_size = 30 ' . S
; : ! Neural
SVM kernel = ’rbf’, C = 2.0, epsilon = 0.1, gamma = ’scale’ ' - Support Vector Machine ——— i Network
DNN hidden_layer_sizes = (64, 128, 64), activation = ’relu’, i : :
solver = ’adam’, max_iter = 1000, learning_rate_init = 0.001 E E Deep Neural Network ———— 1
Meta Learner (DNN) hidden_layer_sizes = (64, 128, 32), activation = ’relu’, : : :

https://batsim.readthedocs.io/en/latest/
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I Scheduling Performance Result

Scheduling Policy SDSC-DS-2004 ANL-Intrepid-2009 SuperNode-XP-2017
EASY Backfilling 1098.2s 4982.7s 160158.1s
Deviation Backfilling (w-kNN) 967.5s 4149.8s 140861.1s

Deviation Backfilling (JSEP) 979.2s 3875.6s 132803.9s

Average Job Wait Time (Lower is better)

Scheduling Policy SDSC-DS-2004 ANL-Intrepid-2009 SuperNode-XP-2017
i EASY Backfilling 6.22 10074.33 7.55
- Deviation Backfilling (w-kNN) 5.69 7343.79 6.19

Deviation Backfilling (JSEP) 5.81 5759.91 %

Average Job Slowdown (Lower is better)
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I Ensemble Prediction Performance

Configuration ANL-Intrepid-2009 SDSC-DS-2004 SuperNode-XP-2017
JREP (7902.91 10280.30
JREP w/o DNN 8144.56 10202.49 158158.78
JREP w/o RF 8282.08 11003.38 166371.42
JREP w/o kNN 8724.68 10439.66 176607.71
JREP w/o SVM 8251.55 10388.23 153210.82

RSME Comparison Across Datasets (Lower is better)

Configuration ANL-Intrepid-2009 SDSC-DS-2004 SuperNode-XP-2017
JREP 0.2359 0.2095 -0.1852>

0 JREP w/o DNN 0.1885 0.2214 -0.2666
JREP w/o RF 0.1608 0.0944 -0.4015
JREP w/o kNN 0.0687 0.1848 -0.5793
JREP w/o SVM 0.1670 0.1928 -0.1886

R2 Comparison Across Datasets (Higher is better)
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I Ensemble Prediction Performance
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5. Conclusions
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I Remarks

= Accurate runtime prediction is essential for optimizing resource allocation
and scheduling in HPC systems.

= We introduced a novel approach called JREP to provide a scalable,
adaptable, and accurate prediction framework that can be directly integrated
iInto scheduling mechanisms.

= We hope that our contribution can be a foundation for further exploration of
ensemble learning in dynamic, heterogeneous HPC environments.
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I What’s next
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